Functions and Structure Single Pointer
In this section, you are going to learn
What are the calling conventions of structure single pointer ?
Call by Value
Call by Reference
Revisit Basics : Basics of Structure Single Pointers
Topics in this section,
struct ABC {
type1 member1;
type2 member2;
type3 member3;
};
struct ABC *sp;
Consider a Structure Single Pointer
struct ABC {
int a;
int b;
int c;
};
struct ABC *sp;
Let us answer few basic questions about structure single pointer
If fun(x)
is the function call, then fun(typeof(x))
is the prototype / definition
Function Call |
Function Definition |
Observations |
---|---|---|
fun(sp[0]) |
void fun(struct ABC x) { } |
|
fun(sp[1]) |
void fun(struct ABC x) { } |
|
fun(sp[4]) |
void fun(struct ABC x) { } |
|
fun(&sp[0]) |
void fun(struct ABC *p) { } |
|
fun(&sp[1]) |
void fun(struct ABC *p) { } |
|
fun(&sp[4]) |
void fun(struct ABC *p) { } |
|
fun(*sp) |
void fun(struct ABC x) { } |
|
fun(*(sp + 1)) |
void fun(struct ABC x) { } |
|
fun(*(sp + 4)) |
void fun(struct ABC x) { } |
|
fun(sp) |
void fun(struct ABC *p) { } |
|
fun(sp + 1) |
void fun(struct ABC *p) { } |
|
fun(sp + 4) |
void fun(struct ABC *p) { } |
|
fun(&sp) |
void fun(struct ABC **p) { } |
|
If Declaration has ONE dereference operator, and
Expression has ONE dereference operator [], and
Expression does not have
&
then it is call by value
If Declaration has ONE dereference operators, and
Expression has ONE dereference operator *, and
Expression does not have
&
then it is call by value
If Declaration has ONE dereference operator, and
Expression has ONE dereference operators [] or *, and
Expression has ONE &
then it is call by reference
Example : &sp[0]
If Declaration has ONE dereference operator, and
Expression has ZERO dereference operator [ ] or *, and
Expression has ZERO & operator
then it is call by reference
Example : sp + 1, sp + 4
If Declaration has ONE dereference operator, and
Expression has ZERO dereference operator [ ] or *, and
Expression has ONE & operator
then it is call by reference
Example : &sp
Let us look at examples of Call by Value
Example for Call By Value with [ ]
Step 1 : Define a structure single pointer
sp
struct ABC {
int a;
int b;
int c;
};
struct ABC *sp;
Step 2 : Allocate heap memory of Bytes
sp = malloc(5 * sizeof(struct ABC));
Step 3 : Copy values to heap memory pointed to by
sp
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
Step 4 : Pass an individual structure
sp[2]
to a function. Call by Value
fun(sp[2]);
Individual heap elements can be accessed using [ ]
In this case sp[2]
is third structure in the heap
sp[2]
is fully dereferenced and there is no &
symbol in fun(sp[2])
. Hence this is Call By Value
Step 5 : Define function
fun
void fun(struct ABC x)
{
}
Step 6 : Change value of
x
inside functionfun
void fun(struct ABC x)
{
x.a = 777;
x.b = 888;
x.c = 999;
}
Step 7 : Free heap memory after use
free(sp);
See the full program below
#include <stdio.h>
#include <stdlib.h>
struct ABC {
int a;
int b;
int c;
};
void fun(struct ABC x)
{
x.a = 777;
x.b = 888;
x.c = 999;
}
int main(void)
{
struct ABC *sp;
sp = malloc(5 * sizeof(struct ABC));
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
printf("----- Before Call By Value -----\n");
printf("sp[2].a = %d\n", sp[2].a);
printf("sp[2].b = %d\n", sp[2].b);
printf("sp[2].c = %d\n", sp[2].c);
fun(sp[2]);
printf("----- After Call By Value -----\n");
printf("sp[2].a = %d\n", sp[2].a);
printf("sp[2].b = %d\n", sp[2].b);
printf("sp[2].c = %d\n", sp[2].c);
free(sp);
return 0;
}
Output is as below
----- Before Call By Value -----
sp[2].a = 7
sp[2].b = 8
sp[2].c = 9
----- After Call By Value -----
sp[2].a = 7
sp[2].b = 8
sp[2].c = 9
Changing value of x
inside function fun
DOES NOT change sp[2]
Example for Call By Value with *
Step 1 : Define a structure single pointer
sp
struct ABC {
int a;
int b;
int c;
};
struct ABC *sp;
Step 2 : Allocate heap memory of Bytes
sp = malloc(5 * sizeof(struct ABC));
Step 3 : Copy string to heap memory pointed to by
sp
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
Step 4 : Pass an individual structure
*(sp + 2)
to a function. Call by Value
fun( *(sp + 2) );
Individual array elements can be accessed using *
In this case *(sp + 2)
is third structure in the array
*(sp + 2)
is fully dereferenced and there is no &
symbol in fun( *(sp + 2) )
. Hence this is Call By Value
Step 5 : Define function
fun
void fun(struct ABC x)
{
}
Step 6 : Change value of
x
inside functionfun
void fun(struct ABC x)
{
x.a = 777;
x.b = 888;
x.c = 999;
}
Step 7 : Free heap memory after use
free(sp);
See the full program below
#include <stdio.h>
#include <stdlib.h>
struct ABC {
int a;
int b;
int c;
};
void fun(struct ABC x)
{
x.a = 777;
x.b = 888;
x.c = 999;
}
int main(void)
{
struct ABC *sp;
sp = malloc(5 * sizeof(struct ABC));
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
printf("----- Before Call By Value -----\n");
printf(" (*(sp + 2)).a = %d\n", (*(sp + 2)).a );
printf(" (*(sp + 2)).b = %d\n", (*(sp + 2)).b );
printf(" (*(sp + 2)).c = %d\n", (*(sp + 2)).c );
fun( *(sp + 2) );
printf("----- After Call By Value -----\n");
printf(" (*(sp + 2)).a = %d\n", (*(sp + 2)).a );
printf(" (*(sp + 2)).b = %d\n", (*(sp + 2)).b );
printf(" (*(sp + 2)).c = %d\n", (*(sp + 2)).c );
free(sp);
return 0;
}
Output is as below
----- Before Call By Value -----
(*(sp + 2)).a = 7
(*(sp + 2)).b = 8
(*(sp + 2)).c = 9
----- After Call By Value -----
(*(sp + 2)).a = 7
(*(sp + 2)).b = 8
(*(sp + 2)).c = 9
Changing value of x
inside function fun
DOES NOT change *(sp + 2)
Remember sp[2]
and *(sp + 2)
are one and the same
Let us look at examples of Call by Reference
Example for Call By Reference with &sp[ ]
Step 1 : Define a structure single pointer
sp
struct ABC {
int a;
int b;
int c;
};
struct ABC *sp;
Step 2 : Allocate heap memory of Bytes
sp = malloc(5 * sizeof(struct ABC));
Step 3 : Copy values to heap memory pointed to by
sp
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
Step 4 : Pass address of an individual structure
&sp[2]
to a function. Call by Reference
fun( &sp[2] );
Address of individual heap elements can be accessed using &
In this case &sp[2]
is the address of third structure in the heap
Since we are passing address of third structure to function fun
, it is called call by reference with respect to third structure
Step 5 : Define function
fun
void fun(struct ABC *x)
{
}
Step 6 : Change value of
*x
inside functionfun
void fun(struct ABC *x)
{
x->a = 777;
x->b = 888;
x->c = 999;
}
Step 7 : Free heap memory after use
free(sp);
See the full program below
#include <stdio.h>
#include <stdlib.h>
struct ABC {
int a;
int b;
int c;
};
void fun(struct ABC *x)
{
x->a = 777;
x->b = 888;
x->c = 999;
}
int main(void)
{
struct ABC *sp;
sp = malloc(5 * sizeof(struct ABC));
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
printf("----- Before Call By Reference -----\n");
printf("sp[2].a = %d\n", sp[2].a);
printf("sp[2].b = %d\n", sp[2].b);
printf("sp[2].c = %d\n", sp[2].c);
fun( &sp[2] );
printf("----- After Call By Reference -----\n");
printf("sp[2].a = %d\n", sp[2].a);
printf("sp[2].b = %d\n", sp[2].b);
printf("sp[2].c = %d\n", sp[2].c);
free(sp);
return 0;
}
Output is as below
----- Before Call By Value -----
sp[2].a = 7
sp[2].b = 8
sp[2].c = 9
----- After Call By Value -----
sp[2].a = 777
sp[2].b = 888
sp[2].c = 999
Changing value of *x
inside function fun
CHANGES sp[2]
in sp
Example for Call By Reference with (sp + x)
Step 1 : Define a structure single pointer
sp
struct ABC {
int a;
int b;
int c;
};
struct ABC *sp;
Step 2 : Allocate heap memory of Bytes
sp = malloc(5 * sizeof(struct ABC));
Step 3 : Copy Values to heap memory pointed to by
sp
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
Step 4 : Pass address of individual structure
sp + 2
to a function. Call by Reference
fun( sp + 2 );
In this case sp + 2
is the address of third structure in the heap
Since we are passing address of third structure to function fun
, it is called call by reference with respect to third structure
Step 5 : Define function
fun
void fun(struct ABC *x)
{
}
Step 6 : Change value of
*x
inside functionfun
void fun(struct ABC *x)
{
x->a = 777;
x->b = 888;
x->c = 999;
}
Step 7 : Free heap memory after use
free(sp);
See the full program below
#include <stdio.h>
#include <stdlib.h>
struct ABC {
int a;
int b;
int c;
};
void fun(struct ABC *x)
{
x->a = 777;
x->b = 888;
x->c = 999;
}
int main(void)
{
struct ABC *sp;
sp = malloc(5 * sizeof(struct ABC));
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
printf("----- Before Call By Reference -----\n");
printf("sp[2].a = %d\n", sp[2].a);
printf("sp[2].b = %d\n", sp[2].b);
printf("sp[2].c = %d\n", sp[2].c);
fun( sp + 2 );
printf("----- After Call By Reference -----\n");
printf("sp[2].a = %d\n", sp[2].a);
printf("sp[2].b = %d\n", sp[2].b);
printf("sp[2].c = %d\n", sp[2].c);
free(sp);
return 0;
}
Output is as below
----- Before Call By Reference -----
sp[2].a = 7
sp[2].b = 8
sp[2].c = 9
----- After Call By Reference -----
sp[2].a = 777
sp[2].b = 888
sp[2].c = 999
Changing value of *x
inside function fun
CHANGES sp[2]
Step 1 : Define a structure single pointer
sp
struct ABC {
int a;
int b;
int c;
};
struct ABC *sp;
Step 2 : Allocate heap memory of Bytes
sp = malloc(5 * sizeof(struct ABC));
Step 3 : Copy Values to heap memory pointed to by
sp
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
Step 4 : Pass full array array to a function
fun( sp );
Note that we are passing starting address of array
Hence function fun
has read and write access to all Bytes of array
Step 5 : Define a function
void fun(struct ABC *x)
{
int data = 99;
for (int i = 0; i < 5; i++)
{
x[i].a = data++;
x[i].b = data++;
x[i].c = data++;
}
}
function fun
has access to all structures
Step 6 : Free heap memory after use
free(sp);
See full program below
#include <stdio.h>
#include <stdlib.h>
struct ABC {
int a;
int b;
int c;
};
void fun(struct ABC *x)
{
int data = 99;
for (int i = 0; i < 5; i++)
{
x[i].a = data++;
x[i].b = data++;
x[i].c = data++;
}
}
int main(void)
{
struct ABC *sp;
sp = malloc(5 * sizeof(struct ABC));
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
printf("----- Before Call By Reference -----\n");
for (int i = 0; i < 5; i++)
{
printf("sp[%d].a = %d\n", i, sp[i].a);
printf("sp[%d].b = %d\n", i, sp[i].b);
printf("sp[%d].c = %d\n", i, sp[i].c);
}
fun(sp);
printf("----- After Call By Reference -----\n");
for (int i = 0; i < 5; i++)
{
printf("sp[%d].a = %d\n", i, sp[i].a);
printf("sp[%d].b = %d\n", i, sp[i].b);
printf("sp[%d].c = %d\n", i, sp[i].c);
}
free(sp);
return 0;
}
Output is as below
----- Before Call By Reference -----
sp[0].a = 1
sp[0].b = 2
sp[0].c = 3
sp[1].a = 4
sp[1].b = 5
sp[1].c = 6
sp[2].a = 7
sp[2].b = 8
sp[2].c = 9
sp[3].a = 10
sp[3].b = 11
sp[3].c = 12
sp[4].a = 13
sp[4].b = 14
sp[4].c = 15
----- After Call By Reference -----
sp[0].a = 99
sp[0].b = 100
sp[0].c = 101
sp[1].a = 102
sp[1].b = 103
sp[1].c = 104
sp[2].a = 105
sp[2].b = 106
sp[2].c = 107
sp[3].a = 108
sp[3].b = 109
sp[3].c = 110
sp[4].a = 111
sp[4].b = 112
sp[4].c = 113
Step 1 : Define a structure single pointer
sp
struct ABC {
int a;
int b;
int c;
};
struct ABC *sp;
Step 2 : Allocate heap memory of Bytes
sp = malloc(5 * sizeof(struct ABC));
Step 3 : Copy string to heap memory pointed to by
sp
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
Step 4 : Pass full array by reference with relative addressing
fun( sp + 2 );
Note that we are passing part of the array by reference
In this case, we are passing address of 3rd structure
Hence function fun
has read and write access to structures at indexes 2, 3, 4 in forward direction
Hence function fun
has read and write access to structures at indexes 0, 1 in backward direction
Step 5 : Define a function
void fun(struct ABC *x)
{
x[-2].a = 100; // Same as sp[0]
x[-1].a = 101; // Same as sp[1]
x[0].a = 102; // Same as sp[2]
x[1].a = 103; // Same as sp[3]
x[2].a = 104; // Same as sp[4]
}
Note the relative access mechanism used inside function fun
See full program below
#include <stdio.h>
#include <stdlib.h>
struct ABC {
int a;
int b;
int c;
};
void fun(struct ABC *x)
{
x[-2].a = 100; // Same as sp[0]
x[-1].a = 101; // Same as sp[1]
x[0].a = 102; // Same as sp[2]
x[1].a = 103; // Same as sp[3]
x[2].a = 104; // Same as sp[4]
}
int main(void)
{
struct ABC *sp;
sp = malloc(5 * sizeof(struct ABC));
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
printf("----- Before Call By Reference -----\n");
for (int i = 0; i < 5; i++)
{
printf("sp[%d].a = %d\n", i, sp[i].a );
}
fun(sp + 2);
printf("----- After Call By Reference -----\n");
for (int i = 0; i < 5; i++)
{
printf("sp[%d].a = %d\n", i, sp[i].a );
}
free(sp);
return 0;
}
Output is as below
----- Before Call By Reference -----
sp[0].a = 1
sp[1].a = 4
sp[2].a = 7
sp[3].a = 10
sp[4].a = 13
----- After Call By Reference -----
sp[0].a = 100
sp[1].a = 101
sp[2].a = 102
sp[3].a = 103
sp[4].a = 104
Step 1 : Define a structure single pointer
sp
struct ABC {
int a;
int b;
int c;
};
struct ABC *sp;
Step 2 : Allocate heap memory of Bytes
sp = malloc(5 * sizeof(struct ABC));
Step 3 : Copy string to heap memory pointed to by
sp
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
Step 4 : Pass the address of array
sp
to functionfun
fun(&sp);
Step 5 : Define the function
fun
void fun( struct ABC **dp)
{
}
Note that struct ABC **dp
is a pointer to a structure single pointer
Step 6 : Access full string inside function
fun
void fun( struct ABC **dp )
{
}
Step 7 : Access individual structures inside function
fun
void fun( struct ABC **dp )
{
//Change individual structures
(*dp)[0].a = 99;
(*dp)[1].a = 100;
(*dp)[2].a = 101;
(*dp)[3].a = 102;
(*dp)[4].a = 103;
}
Step 8 : Free heap memory after use
free(sp);
See the full program below
#include <stdio.h>
#include <stdlib.h>
struct ABC {
int a;
int b;
int c;
};
void fun( struct ABC **dp )
{
//Change individual structures
(*dp)[0].a = 99;
(*dp)[1].a = 100;
(*dp)[2].a = 101;
(*dp)[3].a = 102;
(*dp)[4].a = 103;
}
int main(void)
{
struct ABC *sp;
sp = malloc(5 * sizeof(struct ABC));
sp[0].a = 1; sp[0].b = 2; sp[0].c = 3;
sp[1].a = 4; sp[1].b = 5; sp[1].c = 6;
sp[2].a = 7; sp[2].b = 8; sp[2].c = 9;
sp[3].a = 10; sp[3].b = 11; sp[3].c = 12;
sp[4].a = 13; sp[4].b = 14; sp[4].c = 15;
printf("----- Before Call By Reference -----\n");
for (int i = 0; i < 5; i++)
{
printf("sp[%d].a = %d\n", i, sp[i].a);
}
fun(&sp);
printf("----- After Call By Reference -----\n");
for (int i = 0; i < 5; i++)
{
printf("sp[%d].a = %d\n", i, sp[i].a);
}
free(sp);
return 0;
}
Output is as below
----- Before Call By Reference -----
sp[0].a = 1
sp[1].a = 4
sp[2].a = 7
sp[3].a = 10
sp[4].a = 13
----- After Call By Reference -----
sp[0].a = 99
sp[1].a = 100
sp[2].a = 101
sp[3].a = 102
sp[4].a = 103
Other topics of structure and functions
Current Module
Previous Module
Next Module
Other Modules